Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Annie Michaud, Frédéric-Georges Fontaine* and Davit Zargarian

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3 J7

Correspondence e-mail:
frederic.fontaine@chm.ulaval.ca

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.040$
$w R$ factor $=0.108$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[tris(3,5-dimethylpyrazolyl)methane]nickel(II) dibromide

In the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6}\right)_{2}\right] \mathrm{Br}_{2}$, the Ni atom is in a slightly distorted octahedral coordination environment, having crystallographic $2 / m$ symmetry. The Ni atom is coordinated by the six pyrazolyl rings of the two tridentate tris(3,5-dimethylpyrazolyl)methane ligands, with $\mathrm{Ni}-\mathrm{N}$ distances in the range $2.0753(17)-2.110$ (3) \AA.

Comment

Polypyrazolylmethane late-transition-metal complexes of the first row have shown great potential for the construction of magnetic devices. In the course of our studies of the coordination chemistry of these ligands with nickel, the synthesis of $\left\{\mathrm{Ni}\left[\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right]_{2}\right\} \mathrm{Br}_{2}$, (I-Br), has been carried out [$\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}$ is $\operatorname{tris}(3,5$-dimethylpyrazolyl)methane].

The title compound (Fig. 1) is similar to that reported previously by Reger et al. (2002) using $\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as precursor. The main differences between the crystallographic studies of $\left\{\mathrm{Ni}\left[\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right]_{2}\right\}\left(\mathrm{BF}_{4}\right)_{2},\left(\mathrm{I}-\mathrm{BF}_{4}\right)$, and $(\mathrm{I}-\mathrm{Br})$ are the counter-ion and the data collection temperature [220 K for $\left(\mathrm{I}_{-}-\mathrm{BF}_{4}\right)$].

Both complexes crystallize in the monoclinic system with C centered unit cells, but ($\mathrm{I}-\mathrm{Br}$) does not possess a glide plane $(C 2 / m)$, whereas $\left(\mathrm{I}_{-} \mathrm{BF}_{4}\right)$ does $(C 2 / c)$. The cation in ($\mathrm{I}-\mathrm{Br}$) has crystallographic $2 / m$ symmetry, giving only two unique $\mathrm{Ni}-\mathrm{N}$ bond distances (see Table 1).

In both cases, the $\mathrm{Ni}^{\mathrm{II}}$ cations adopt a slightly distorted octahedral geometry. The cis $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles within each tridentate ligand of (I-Br) are essentially equivalent [85.65 (11) and $86.53(7)^{\circ}$] and are comparable with those found in $\left(\mathrm{I}_{-} \mathrm{BF}_{4}\right)$ [85.30 (9)-86.26 (9) ${ }^{\circ}$]; the average value of these angles in each compound is the same within experimental error $\left[86.2(3)^{\circ}\right.$ for (I-Br), compared with $85.9(3)^{\circ}$ for $\left.\left(\mathrm{I}-\mathrm{BF}_{4}\right)\right]$. The average of the $\mathrm{Ni}-\mathrm{N}$ bond lengths in (I-Br) is the same for both complexes $(2.09 \AA)$, even though the range of $\mathrm{Ni}-\mathrm{N}$ distances varies slightly $[2.0754$ (17) -2.110 (3) \AA for ($\mathrm{I}-\mathrm{Br}$), compared with 2.076 (2)-2.096 (2) \AA for $\left.\left(\mathrm{I}_{\mathrm{B}}-\mathrm{BF}_{4}\right)\right]$.

Figure 1
A view of the title cation, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Atoms labelled with the suffixes ' $_2$ ' and ' $_5$ ' are related by the symmetry codes $(-x, y,-z)$ and $(-x,-y,-z)$, respectively.

Figure 2
A view of the unit-cell contents. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

Apart from some long $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}(>2.5 \AA)$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ ($>2.8 \AA$) contacts, there are no chemically significant interactions between the Br^{-}anions and the complex cations (Fig. 2).

Experimental

A solution of $\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}(1.07 \mathrm{~g}, 3.58 \mathrm{mmol})$ in boiling butanol was added to a suspension of $\mathrm{NiBr}_{2}(360 \mathrm{mg}, 1.65 \mathrm{mmol})$ in boiling butanol. The reaction mixture was stirred until all the solid suspension had dissolved and a deep blue solid precipitated. The solution was cooled to room temperature and the resulting solid filtered off. Subsequent washing with cold butanol and cold diethyl ether afforded the analytically pure title compound (yield $776 \mathrm{mg}, 58 \%$). Diffusion of diethyl ether into a solution of the title compound in methanol afforded X-ray quality crystals. Analysis calculated for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{12} \mathrm{Br}_{2} \mathrm{Ni}$: C 47.14, H 5.44, N 20.62%; found: C 47.05 , H 5.56, N $20.74 \% .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, \delta$, p.p.m.): 55.61, $-0.50,-2.93,-10.23$; IR (KOH, ν, cm^{-1}): 3413 (br), 3117-2947 (m), 1670 (w), 1562 (s), 1459-
$1387(s), 1306(s), 1256(s), 1175-1125(w), 1114(m), 1042(s), 987(m)$, $908(m), 859(s), 703(s), 631(w), 492(w) ;$ UV-vis $\left[\mathrm{CH}_{3} \mathrm{CN}, \lambda(\mathrm{nm}), \varepsilon\right.$ $\left.\left(\mathrm{mol} \mathrm{l}^{-1}\right)^{-1} \mathrm{~cm}^{-1}\right]:(367,426),(387,322),(610,97),(650,124),(706$, 104), $(753,72)$. M.p. >593 K. $\mu_{\text {eff }}=3.95$.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6}\right)_{2}\right] \mathrm{Br}_{2}$
$M_{r}=815.32$
Monoclinic, $C 2 / m$
$a=18.9240(2) \AA$
$b=10.996$ (1) \AA
$c=8.8821$ (1) \AA
$\beta=92.580(1)^{\circ}$
$V=1846.39$ (17) \AA^{3}
$Z=2$

Data collection

Bruker SMART 2K/Platform diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.447, T_{\text {max }}=0.697$
11178 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.108$
$w R\left(F^{2}\right)=0.108$
$S=1.07$
1907 reflections
126 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0739 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 8952 reflections
$\theta=4.7-72.9^{\circ}$
$\mu=3.61 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, pale pink
$0.18 \times 0.15 \times 0.10 \mathrm{~mm}$

> 1907 independent reflections
> 1702 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.125$
> $\theta_{\max }=72.9^{\circ}$
> $h=-23 \rightarrow 23$
> $k=-13 \rightarrow 13$
> $l=-10 \rightarrow 10$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.60 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Ni}-\mathrm{N} 3$	$2.0754(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.366(5)$
$\mathrm{Ni}-\mathrm{N} 1$	$2.110(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.493(5)$
$\mathrm{C} 11-\mathrm{N} 2$	$1.438(4)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.332(3)$
$\mathrm{C} 11-\mathrm{N} 4$	$1.445(2)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.370(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.314(4)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.358(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.372(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.496(4)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.363(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.399(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.509(6)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.357(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.395(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.482(3)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Ni}-\mathrm{N} 3$	$85.65(11)$	$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 1$	$86.53(7)$
$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 3^{\text {ii }}$	180.0	$\mathrm{~N} 3^{\text {ii }}-\mathrm{Ni}-\mathrm{N} 1$	$93.47(7)$
$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 3^{\text {ii }}$	$94.35(11)$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 1^{\text {iii }}$	180.0

Symmetry codes: (i) $x,-y, z$; (ii) $-x, y,-z$; (iii) $-x,-y,-z$.
H atoms were constrained to the parent site using a riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.5$ (methyl) or 1.2 (others) times $U_{\text {eq }}$ of the parent site. The H atoms on the methyl groups where the C atom is on a crystallographic mirror plane are distributed over six positions and therefore have 0.5 occupancy. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

Financial support from the Natural Sciences and Engineering Research Council of Canada and from the Fonds

metal-organic papers

FQRNT du Ministère de l'Éducation du Québec is gratefully acknowledged.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SMART (Release 5.059) and SAINT (Release 6.06) Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Reger, D. L., Little, A. L. \& Smith, M. D. (2002). Inorg. Chem. 41, 4453-4460. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

